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Abstract. We study the dynamics of moving discrete breathers in an interfaced piecewise DNA molecule.
This is a DNA chain in which all the base pairs are identical and there exists an interface such that
the base pairs dipole moments at each side are oriented in opposite directions. The Hamiltonian of the
Peyrard-Bishop model is augmented with a term that includes the dipole-dipole coupling between base
pairs. Numerical simulations show the existence of two dynamical regimes. If the translational kinetic
energy of a moving breather launched towards the interface is below a critical value, it is trapped in a
region around the interface collecting vibrational energy. For an energy larger than the critical value, the
breather is transmitted and continues travelling along the double strand with lower velocity. Reflection
phenomena never occur. The same study has been carried out when a single dipole is oriented in opposite
direction to the other ones. When moving breathers collide with the single inverted dipole, the same effects
appear. These results emphasize the importance of this simple type of local inhomogeneity as it creates a
mechanism for the trapping of energy. Finally, the simulations show that, under favorable conditions, several
launched moving breathers can be trapped successively at the interface region producing an accumulation
of vibrational energy. Moreover, an additional colliding moving breather can produce a saturation of energy
and a moving breather with all the accumulated energy is transmitted to the chain.

PACS. 63.20.Pw Localized modes – 63.20.Ry Anharmonic lattice modes – 63.50.+x Vibrational states
in disordered systems – 66.90.+r Other topics in nonelectronic transport properties of condensed matter
(restricted to new topics in section 66)

1 Introduction

Nonlinear physics of DNA has experienced an enormous
development in the previous years. There are many exper-
imental data and theoretical results published about the
nonlinear properties of DNA (for a review see, e.g., [1]).
The DNA molecule is a discrete system consisting of many
atoms having a quasi-one-dimensional structure. It can be
considered as a complex dynamical system, and, in order
to investigate some aspects of the dynamics and the ther-
modynamics of DNA, several mathematical models have
been proposed. Among them, it is worth remarking the
Peyrard-Bishop model [2] introduced for the study of DNA
thermal denaturation. This model, and some variations of
it, has also been used extensively for the study of the dy-
namical properties of DNA.

In DNA there exist different kinds of interactions be-
tween the main atomic groups. One of them is the stacking
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interaction between neighbouring bases along the DNA
axis, these are short-range forces which stabilize the DNA
structure and hold one base over the next one form-
ing a stack of bases. There exist also long-range forces,
due to the finite dipole moments of the hydrogen bonds
within the nucleotides. The existence of these forces is
corroborated both by theoretical and experimental stud-
ies. Recently, quantum chemical calculations, using the
second Moler-Plesset perturbation method, have deter-
mined bonds lengths and bonds angles involved in hy-
drogen bonds between the bases of DNA base pairs, as
well as dipole moments based at the MP2/6-31G(d) and
MP2/6-31G(d,p) basis sets [3]. The dipole moments cal-
culated for the adenine-thymine base pair at equilibrium
are, respectively, 1.44 D and 1.29 D. The values calculated
for the guanine-cytosine base pair at equilibrium are, re-
spectively, 5.88 D and 5.79 D. All these values are within
the range of the parameters values for the dipole moments
considered in this paper.
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Fig. 1. Sketch of the dipole chains. (a): the interfaced
piecewise chain, (b): the single inverted-dipole chain.

Some experiments carried out on the dynamics of the
B-A transition of DNA double helices, through the anal-
ysis of the transients observed under electric field pulses,
show that dipolar strectching is the main driving force for
the B-A reaction [4].

The dipole-dipole interactions between different base
pairs should never be ignored and they may play a cru-
cial role for the dynamical properties of DNA, for exam-
ple when the geometry of the double strand of DNA is
taken into account, as the distance between base pairs
and, therefore, the intensity of the coupling between them,
depends on the shape of the molecule [5–11].

Most of the studies have been done considering DNA
homogeneous models. Nevertheless, the DNA molecule is
essentially an inhomogeneous system, and this inhomo-
geneity is characterized by the existence of different local
ranges, or functional regions, with very specific sequences
of base pairs and very specific functions.

Numerical simulations show that discrete breathers
(DBs), which are spatially localized nonlinear oscillations,
can appear in models of crystals, biomolecules, and many
others nonlinear discrete systems [12–14]. It is well known
that DBs can be static, but they can also move under
certain physical conditions [15–17], constituting a mech-
anism for the transport of energy and information along
discrete systems. They are called moving breathers (MBs)
and have been obtained in many different systems [18–20].

In the Peyrard-Bishop model, the existence of DBs has
been demonstrated [21,22], and DBs are thought to be the
precursors of the bubbles that appear prior to the tran-
scription processes in which large fluctuations of energy
have been experimentally observed [23].

The study of MBs in Klein-Gordon models of DNA
chains with the inclusion of long-range interactions was
initiated in [24] using an augmented Peyrard-Bishop
model. The system considered is homogeneous and with-
out bending, that is, all the base pairs are identical,
aligned in a straight line, and all the dipole moments are
parallel along the same direction. The results show that
MBs exist for a wide range of the parameter values, al-
though the mobility is hindered when the intensity of the
long-range interaction increases. Essentially, the effective

mass of a breather increases as the intensity of the dipole-
dipole interaction increases, and there exists a threshold
of the dipole-dipole coupling constant above which the
breather is not movable.

The interaction of MBs with different kind of inho-
mogeneities in the DNA molecule may be also of great
importance for the localization of energy [25,26]. As a
consequence of this interaction, MBs may be trapped in
small regions, that is, vibrations remain affecting only to
a small number of consecutive base pairs, producing an
accumulation of energy, which can initiate denaturation
or transcription bubbles. Also, trapping phenomena may
be on the basis for the appearance of secondary breaks
when DNA is irradiated with ionizing radiation [27].

Structural studies carried out with non coding se-
quences of DNA have shown that poly(dA.dT) sequences
(called T-tracts) are abundant genomic DNA elements.
Suter et al. [28] have shown that they exist as rigid DNA
structures in nucleosome-free yeast promoters in vivo,
that is, in vivo they are not folded in nucleosomes. Their
data support that transcription activation depends on the
length of the T-tracts and the same occurs when they are
replaced by poly(dG.dC) sequences, another rigid struc-
tures. This fact suggests that the T-tracts operate not by
recruitment of specific transcription factors, but rather by
their intrinsic DNA structure, and that transcription ac-
tivation must be intimately related with the dynamical
properties of T-tracts.

These considerations motivated us to study MBs in
some types of poly(dA.dT) or poly(dG.dC) sequences. In
this paper we study the effects of the collisions of MBs
with local inhomogeneities in two different but related sys-
tems.

The first system consists of an inhomogeneous DNA
molecule formed by two consecutive homogeneous regions.
All the base pairs are identical, but the dipoles of a re-
gion are oriented in opposite direction to the dipoles of
the other one, as sketched in Figure 1a. One possibility
is for a sequence being as ...AT/AT/AT/TA/TA/TA...,
where AT and TA represent, respectively, the adenine-
thymine base pair and the thymine-adenine base pair.
The other possibility is for a sequence being as
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...CG/CG/CG/GC/GC/GC..., where CG and GC repre-
sent, respectively, the cytosine-guanine base pair and the
guanine-cytosine base pair. The inhomogeneity is deter-
mined by the existence of an interface that separates these
regions, that is, there exists a local inhomogeneity and the
interface marks a discontinuity in the system. These kind
of chains are called interfaced piecewise chains, they exist
in real DNA and can also be synthesized in the labora-
tory [29,30].

The second system consists in a DNA chain of iden-
tical base pairs with all the dipoles oriented in the same
direction, except one of them which has an opposite ori-
entation, that is, the local inhomogeneity is at the site of
the inverted-dipole, as sketched in Figure 1b.

In both systems, the simulations of MBs launched to-
wards the inhomogeneity show that if the translational ki-
netic energy is below a critical value, which is determined
by the values of the coupling parameters, the breather is
trapped. For greater values, the breather is transmitted to
the chain, losing part of its energy as phonon radiation.
Moreover, reflection of the colliding breather never occurs.

These results emphasizes the enormous importance of
a change of the orientation of a single base pair in a ho-
mogeneous track of DNA chain, as it demonstrates that
a very simple structural change creates a mechanisms for
localization and accumulation of energy.

Moving breathers can also collide with a trapped
breather. Our study of these collision processes shows that
multiple scenarios are possible, one of them is the possi-
bility of getting an accumulation of energy at the inter-
face up to a saturation threshold value. All the accumu-
lated energy can be carried away by a successful incoming
breather. These phenomena suggest a way for the DNA
molecule to accumulate enough energy to break the hy-
drogen bonds between the base pairs on opposing strands.

Another important result concerning these systems,
with a local inhomogeneity and with competing short
and long-range interactions, is that there exists a relevant
parameter determining the range of translational kinetic
values for which MBs are trapped, this is the quotient
between the dipole-dipole and the stacking coupling con-
stants. The critical kinetic energy increases, or the size of
the “trapping window”, if this quotient increases.

This paper is organized as follows: in Section 2, we in-
troduce the interfaced piecewise DNA model and the sin-
gle inverted dipole DNA model, which includes the long-
range interactions and has into account their respective
chain conformations. In Section 3, we investigate the char-
acteristics of the linear modes of the first system, as they
are important for determining possible behaviors of MBs
when they collide with the interface. It is shown that the
linear modes spectrum of this system is similar to the
spectrum of a homogeneous DNA molecule with a single
inverted dipole. In Section 4, we generate numerically MBs
which are launched towards the interface and we study the
collision phenomena, exploring all the possible scenarios
that appear when the translational kinetic energies of the
MBs and the coupling parameters are varied. Thereafter,
we show that the collisions of MBs in the case of a single

inverted dipole DNA molecule, bring about similar effects
to the interfaced case. Section 5 presents some interesting
phenomena that can appear when moving breathers col-
lide with a previous trapped breather. Finally, Section 6
summarizes our results and contains some conclusions.

2 Interfaced piecewise DNA model
We consider a modification of the Peyrard-Bishop DNA
model [2], with the addition of a dipole-dipole energy
term. Thus, the Hamiltonian of the system can be written
as [24]

H =
N∑

n=1

(
1
2
mu̇2

n + D(e−bun − 1)2 +
1
2
ε(un+1 − un)2

+
1
2
µ
∑

m �=n

Jn,mumun

)
. (1)

The term 1
2mu̇2

n represents the kinetic energy of the nu-
cleotide of mass m at the nth site of the chain, and un is
the variable representing the transverse stretching of the
hydrogen bond connecting the bases at the nth site. The
Morse potential, i.e., D(e−bun − 1)2, represents the inter-
action energy due to the hydrogen bonds within the base
pairs, being D the well depth, which corresponds to the
dissociation energy of a base pair, and b−1 is related to the
width of the well. The stacking energy is 1

2ε(un+1 − un)2,
where ε is the stacking coupling constant. The last term
of the Hamiltonian, i.e., 1

2µ
∑

n

∑
m �=n Jn,mumun, is the

long-range dipole-dipole interaction term, where µ is the
dipole-dipole coupling constant. The expression for this
constant is µ = q2/4πε0d

3 [24], q being the charge transfer
within the dipole and d the distance between neighbour-
ing base pairs, which is supposed to be constant. Finally,
Jn,m is the dipole-dipole coupling factor given by

Jn,m =
αn,m

|m − n|3 , (2)

where |m − n| is the normalized distance between base
pairs, and αn,m takes the value 1 if the dipoles at n and
m are parallel, and −1 if they are antiparallel.

In order to keep the spatial homogeneity in a finite sys-
tem with periodic boundary conditions [30], the number
of particles affected by the long-range interaction must
be limited. In consequence, if N is the number of base
pairs, we suppose that the long-range interaction affects to
(N−1)/2 neighboring base pairs, if N is odd, or (N−2)/2,
if N is even, to each direction of a given site of the chain.
In fact, we use periodic boundary conditions in a way that
both the last dipole and the first one are pointing along
the same direction, this implies that the interfaced piece-
wise chain must has the geometry of a Möbius band, and
in this way there exists only one interface in the chain.
As an example, we can consider a small system with
N = 8, with the dipoles located at n = +1, +2, +3, +4
pointing in one direction and the other ones located at
n = −1,−2,−3, 0 pointing in opposite direction. Then,
the dipole-dipole coupling factors Jn,n+p can be written
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0.1250 0.0370 0 0.0370 0.1250 1
1 0 1 0.1250 −0.0370 0 0.0370 0.1250

0.1250 1 0 1 −0.1250 −0.0370 0 0.0370
0.0370 0.1250 1 0 −1 −0.1250 −0.0370 0

0 −0.0370 −0.1250 −1 0 1 0.1250 0.0370
0.0370 0 −0.0370 −0.1250 1 0 1 0.1250
0.1250 0.0370 0 −0.0370 0.1250 1 0 1

1 0.1250 0.0370 0 0.0370 0.1250 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Fig. 2. Left: frequencies of the linear modes varying the coupling parameter µ for ε = 0.129. The upper line represents the top
mode and the lower line represents the bottom mode. Right: top and bottom mode frequencies with respect to µ. Crosses and
dots represent, respectively, analytical and numerical values.

in a matrix form as follows:

see the matrix above

We perform the following changes of variables:

t → ω0t, un → bun, ε → ε

mω2
0

,

µ → µ

mω2
0

, H → H

2D
, D → 1

2
, (3)

where ω0 =
√

2b2D/m is the frequency of an isolated
oscillator in the harmonic limit. It becomes unity in the
scaled system.

With these changes, the dynamical equations become:

ün + (e−un − e−2un) + ε(2un − un+1 − un−1)

+ µ
∑

m �=n

αn,m

|m − n|3 um = 0. (4)

3 Analysis of the linear modes

The study of the linear modes (phonons) of a nonlinear
discrete system gives a necessary information for predict-
ing some properties of the MBs with a given frequency. For
example, the frequencies of MBs must be not too close to
the phonon band. Otherwise, they emit a large amount of

phonon radiation simultaneously to their movement. Fur-
thermore, as it was shown in [31], the analysis of linear
modes allows to predict the scenario of the collisions of
MBs with inhomogeneities without the necessity of per-
forming numerical simulations.

The dynamical equations of the interfaced piecewise
system can be linearized if we assume that the amplitudes
of the oscillations are small enough. Then, the linearized
dynamical equations are:

ün+un+ε(2un−un+1−un−1)+µ
∑

p�=0

Jn,n+pun+p = 0. (5)

We have calculated numerically the frequencies of the
linear modes for different values of the parameters ε and
µ. Figure 2 (left) shows the dependence of the frequency
spectrum with respect to the parameter µ for the fixed
value of ε = 0.129, which is an appropriate value to ob-
tain MBs with low dispersion [9]. In this figure, it can be
observed the existence of localized modes whose origin re-
lies in the fact that the interface acts as an inhomogeneity
in the lattice. The localized modes are two, one of them
is above (top mode) and the other one is below (bottom
mode) the extended modes (phonon band).

The generic profiles of the localized modes are shown in
Figure 3. Their vibration patterns depend on the param-
eter µ. In particular, we have observed that there exists a
critical value µc such that for µ < µc, the top mode has a



A. Alvarez et al.: Breather trapping and breather transmission in a DNA model with an interface 123

Fig. 3. Generic profiles of the top and bottom localized modes
for the coupling values µ = 0.05 and ε = 0.129.

zig-zag vibration pattern, while the bottom mode vibrates
in phase. For µ > µc, the vibration patterns are inter-
changed. As it is shown below, µc ≈ ε (e.g. for ε = 0.129,
µc = 0.123). This fact is related to the existence of a com-
petition between the attractive (stacking) and the repul-
sive (dipole-dipole) interaction. The first one is dominant
for ε � µc and vice versa.

An approximate explicit expression that gives the de-
pendence of the localized modes frequencies with respect
to the coupling constant µ can be obtained considering
that the long-range interaction is limited to nearest neigh-
bour base pairs. A study of infinity-range interaction could
be performed, but it would be limited to frequencies close
to the phonon band [30,5]. This approximation is justified
as the interaction decays rapidly. We have checked that
the results are practically coincident except for values of
µ far from the ones considered in our study.

The localized modes can be found using Green’s lattice
function methods [32,21,33]. However, the same results
can be obtained in a more straightforward way using the
following ansatz:

{
un = a0r

|n| exp(i ω t) for n > 0
un = a1r

|n−1| exp(i ω t) for n < 1,
(6)

where r is a spatial decay factor. The sign of r indicates
the vibration pattern of the localized mode. If r > 0, the
particles vibrate in phase, and if r < 0, the mode has a
zig-zag vibration pattern.

We have supposed that the dipoles at n ≥ 1 are all
antiparallel to the dipoles at n ≤ 0, then, there exists only
two neighboring dipoles which have a different orientation,
and the interface is located between n = 0 and n = 1. As
the localized modes are centered between both (see Fig. 3),
we assume that:
{

a0 = −a1 (corresponds to the top mode)
a0 = a1 (corresponds to the bottom mode). (7)

With the application of these ansätze we obtain that the
frequencies of the top and bottom modes are, respectively:

ω2
top = ω2

0 +2
µ2 + 2ε2 + εµ

ε + µ
; ω2

bottom = ω2
0 +2µ

ε − µ

ε + µ
.

(8)
The decay factors for the top and bottom modes are, re-
spectively:

rtop =
µ − ε

µ + ε
; rbottom = −rtop. (9)

From these expressions, it is easy to obtain that µc = ε.
The discrepancies from this value and the numerical one
rely on our assumption that long-range interactions are
limited to nearest neighbours. The values of the parame-
ters for which the breather frequency ωb = ωbottom are re-
lated to the scattering properties, see reference [31]. How-
ever, these values are excluded in our study, because as we
require the existence of moving breathers, we need that
µ < M and ε > M , with M ≈ 0.2ω2.4

b [24]. In other
words, ε > µ is a necessary condition for the existence of
moving breathers. The equality ωb = ωbottom implies that
µ = [(2ε− δ)+

√
4ε2 + δ2 − 8εδ]/2, with δ ≡ ω2

b −ω2
0 < 0.

Thus, it is straightforward to demonstrate that µ must be
greater than ε in order to get breather resonance with the
bottom mode frequency. This region is inaccessible for the
moving breathers, as it is shown above.

The analytical and numerical results that give the de-
pendence of the frequencies of the localized modes with
respect to µ are represented in Figure 2 (right). As can be
appreciated, there is an excellent agreement between the
two approaches.

The single inverted dipole system also has two linear
localized modes, but now they are localized at the inverted
dipole site. The frequencies of these modes are:

ω2
inv = ω2

0 + 2ε ± 2ε2 − 4εµ − 14µ2

√
ε2 + 6εµ − 15µ2

. (10)

4 Evolution of moving discrete breathers
in the interfaced piecewise DNA chain

The dynamics of MBs can be strongly affected by the ex-
istence of the interface. It is expected that MBs differing
only in their translational kinetic energies can produce
different effects when they interact with the interface. In
order to study these effects, we have simulated many colli-
sions processes launching MBs towards the interface with
different translational kinetic energies.

MBs can be generated numerically by adding to the
velocities of a static breather a perturbation of magnitude
λ collinear to the pinning mode [15,16]. The pinning mode
is an anti-symmetric linear localized mode, which may ap-
pear in the set of linear perturbations of the system when
the coupling is strong enough. This perturbation breaks
down the translational symmetry of the system and the
breather moves with a translational kinetic energy given
by K = λ2/2. The time evolution of the breathers have
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Fig. 4. Two different regimes for the interac-
tion of MBs with the interface. Displacement
from the n-th equilibrium position versus time,
for two different values of the translational ki-
netic energy: (a) λ < λc and (b) λ > λc, with
µ = 0.002, ε = 0.129 and ωb = 0.8. For these
parameters values, λc = 0.056. The interface is
located between n = 0 and n = 1.

been studied using a Calvo’s 5th order symplectic algo-
rithm [34].

Recent quantum-mechanical calculations [35] estab-
lishes that in DNA the order of magnitude of the param-
eter µ is 0.002, therefore, as we are interested in applica-
tions to DNA, we have limited our study to this order.

MBs are not exact solutions of the dynamical equa-
tions and some phonon radiation is emitted simultane-
ously to the movement of breathers. This radiation is min-
imized if the breather frequency is not close to the phonon
band. In all the simulations, the breather frequency has
been fixed to the value of ωb = 0.8, which is an appro-
priate value. For smaller values of ωb, the breather gets
more and more sharply localized and highly pinned to
the lattice, and for ωb � 0.67 its movement is not pos-
sible. Also, phonon radiation increases when the value of
the translational kinetic energy increases and some effects
due to the size of the system can appear. For that reason
the calculations have been tested using different systems
sizes, to make sure that the results are not modified by
boundary effects (most of the simulations have been done
with N > 200). The values of the parameter λ have been
limited to the interval (0.01, 0.3), as for this interval the
phonon radiation is small enough. Finally, the first group
of simulations have been done with the value of the stack-
ing coupling constant ε = 0.129.

We have performed a large number of simulations and,
essentially, we have found that there exist only two dif-
ferent dynamical regimes, which can be characterized as
follows:

Trapping regime: If the translational kinetic energy of
a MB is smaller than a critical value, i.e. λ < λc,
the breather is trapped at the discontinuity region,
that is, only some particles around the interface re-
main oscillating. The critical translational kinetic en-

ergy depends on the values of the parameters µ, ε and
ωb. An example of the time evolution of a MB with
λ smaller than the critical value, is observed in Fig-
ure 4a. However, not all the moving breather energy
is trapped after the collision because some energy is
transferred to the chain as phonon radiation. To see
this, we have studied the evolution of the “central en-
ergy”, i.e. the energy of some few particles around the
interface, which is represented in Figure 5a. Before the
collision the central energy is zero, then it increases
quickly taking the value of the incident breather en-
ergy, and a small decay of this energy occurs which is
due to phonon radiation. This can be appreciated in
the central zoom figure of Figure 5a.
The analysis of the Fourier spectrum of this trapped
breather, carried out after the initial decay of the cen-
tral energy and at an early stage of the evolution,
shows a frequency of value 0.8, which is the internal
frequency ωb of the launched breather, and a frequency
of value 0.02, which corresponds to an oscillating move-
ment of the breather around the interface. This type of
movement can be appreciated in Figure 4a. The abso-
lute values of the Fourier components calculated soon
after the collision of the breather with the interface
are represented in Figure 6, and the central energy of
this breather has the value 0.7975. The same calcula-
tions carried out after a time of 200 breather periods,
shows a decrease of the Fourier component correspond-
ing to ω = 0.02, and a central energy of value 0.7943.
A very slow-decaying process occurs and the oscillat-
ing trapped breather approaches to a static breather
centered at the interface with frequency ωb = 0.8. The
energy of this existing static breather is 0.7646. Then,
a necessary condition for the trapping effect is the exis-
tence of an inhomogeneity breather solution (IB) with
the frequency of the MB and with a smaller energy. It
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Fig. 5. Time evolution of the central energy corresponding to the collision processes: (a) in Figure 4a; (b) in Figure 4b. The
central figure is a zoom of the left one.

Fig. 6. Absolute values of the Fourier components of the
trapped breather shown in Figure 4a calculated soon after the
collision.

consists of a static breather solution centered at the
inhomogeneity to which the trapped breather decays.
The trapping phenomena for small enough transla-
tional kinetic energies, and the oscillatory behavior
as a whole of the trapped breather can be partially
explained with the help of the collective coordinate
method.
In fact, the long-range interaction term of the
Hamiltonian may be represented as follows:

1
2
µ
∑

n

∑

m �=n

Jn,munum =

∑

n

V Eff
n u2

n − 1
4
µ
∑

n

∑

m �=n

Jn,m(un − um)2, (11)

where the first summation term in the rhs represents
an effective on-site energy [36], with the on-site po-
tential

V Eff
n =

1
2
µ
∑

m �=n

Jn,m (12)

Fig. 7. Effective potential V Eff
n , versus site number, n, for the

interfaced piecewise system (dots) and for the single inverted
dipole system (open circles).

and the second summation term represents an effec-
tive dispersion energy. In the case of a spatially homo-
geneous system the on-site potential does not depend
on the index n, but for the interfaced piecewise system
the potential V Eff

n , with µ = 0.002, has the well profile
shown in Figure 7 (dots). It has a symmetric profile,
and the depth is close to µ. The DNA chain with a
point inhomogeneity given by a single inverted-dipole
has an effective potential with the well profile shown in
Figure 7 (open circles). It is also a symmetric profile,
and the depth is close to 2µ.
The set of dynamical equations derived from the
Hamiltonian (1) can be transformed, in the continuum
limit, into the corresponding continuous partial differ-
ential equation. Within this context the collective co-
ordinate method provides a good way to analyze the
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influence of a perturbation on a soliton (in our case
we can consider the long range interaction term as a
perturbation). The idea is the same as using the center
of mass to analyze the behavior of a system of parti-
cles. The method introduces the center of the breather
“x” as a description variable, and the on-site potential
affects as a potential energy of the form

V (x) =
1
2
µ
∑

n

V Eff
n u2

n−x. (13)

If the breather is well localized, as occurs in our cases,
V (x) ≈ V Eff

x . In other words, the translational move-
ment of the breather center “x” is affected by a sym-
metric potential well with the same form as the shown,
for each case, in Figure 7. If the translational kinetic
energy of the breather is small enough, the phonon
radiation emitted as it passes through the potential
well prevents the transmission of the breather and it is
trapped with an oscillating movement like a particle in
a potential well. The remaining terms in equation (11)
also contribute to the center of breather motion but
they are not so significant. In fact, in the continuum
approximation they lead to a space-dependent effective
mass of excitation.

Transmission regime: If the translational kinetic en-
ergy of a MB is bigger than the critical value, i.e.
λ > λc, the breather crosses the interface and contin-
ues its movement along the chain with smaller trans-
lational kinetic energy. In other words, the breather is
transmitted as a consequence of the interaction with
the interface, and a small part of its energy is trans-
ferred to the chain as phonon radiation. An example
of a transmitted MB can be seen in Figure 4b, and the
evolution of the corresponding central energy is shown
in Figure 5b.

The same qualitative results have been found in the case of
the parallel-oriented dipole chain with a single inverted-
dipole. In this case, the trapping site is centered at the
inverted dipole.

Both this system and the interfaced piecewise system
have a symmetric effective on-site potential well due to
the dipole coupling. Also, both of them have two linear
localized modes. The nonexistence of an effective on-site
potential barrier makes impossible the appearance of a
reflection regime.

As mentioned before, the critical value λc depends on
the values of the parameters µ, ε and the breather fre-
quency ωb. We have numerically determined the depen-
dence of λc with respect to µ for some different values of
ε and the fixed value ωb = 0.8. The results are shown in
Figure 8, where it can be observed that, for a fixed value
of ε, λc increases monotonously with µ, and, for a fixed
value of µ, λc decreases monotonously with ε.

Equation (9) shows that the extent of localization of
the linear localized modes depends on the values of the
parameters µ and ε. In fact, for the interfaced system
the decay factor for the bottom mode is given approxi-

Fig. 8. Dependence of λc with respect to µ for some different
values of ε.

mately by

rbottom =
(
1 − µ

ε

)2

. (14)

Then, the extent of localization depends basically on the
quotient κ = µ/ε. We have observed that varying µ and
ε with constant κ, the values of λc are practically coin-
cident. Also, when κ increases, or rbottom decreases, λc

increases. The IB solution is even more localized than the
bottom mode because ωb < ωbottom. The values of the
critical translational kinetic energies that determine the
transitions from the trapping to the transmission regimes
are related to the extent of localization of the IB solu-
tion. An important result is that for a given system the
“trapping window”, defined as the range of translational
kinetic energy for which trapping occurs, is related to the
quotient κ. Higher localization hinders the capability of
breathers for being transmitted to the chain.

A similar conclusion can be obtained for the single
inverted dipole chain. In this case the values of λc are
higher than the corresponding to the interfaced chain. For
example, with µ = 0.002 and ε = 0.129 we obtain λc =
0.195. With the same value of ε and with µ = 0.0025,
λc > 0.3, although this value is out of the interval of λ
values that we have considered in this paper.

The problem of the interaction of MBs with an im-
purity in a homogeneous Klein-Gordon chain was consid-
ered in [31]. In that case MBs can be reflected, trapped
or transmitted by the impurity, and a necessary condition
for the appearance of trapping is the existence of an im-
purity breather solution, that is, a static breather solution



A. Alvarez et al.: Breather trapping and breather transmission in a DNA model with an interface 127

Fig. 9. Dependence of the difference be-
tween the inhomogeneity breather energy
(EIB) and the internal energy of the mov-
ing breather (EMB) with respect to µ, for
ε = 0.129 and ωb = 0.8. (a) the interface
case, (b) the single inverted-dipole case.

centered at the impurity. Similarly, we have seen that for
our systems a necessary condition for trapping is the exis-
tence of an inhomogeneity breather solution (IB) with the
frequency of the MB and an internal energy smaller than
the internal energy of the MB.

Figure 9 shows that, for ε = 0.129 and ωb = 0.8,
the difference between the inhomogeneity breather energy
(EIB) and the internal energy of the moving breather
(EMB) is negative. This confirms the existence of inho-
mogeneity breathers and that its energy is smaller than
the moving breather energy, which is the necessary condi-
tion for trapping.

It can also be observed in this figure that the magni-
tude the difference between the inhomogeneity breather
energy (EIB) and the internal energy of the moving
breather (EMB) increases monotonously with µ. Thus, the
phonon radiation emitted by a trapped breather increases
with µ.

5 Energy accumulation at the interface
region: breather collisions

The study of the trapping of several breathers at the in-
terface region is of great interest. When a MB is trapped,
other incoming breathers can also be trapped after col-
liding with the interface. This process could increase the
energy density locally, thus collecting or accumulating en-
ergy in the interface region. Another point of interest is
whether there is a saturation threshold for this accumu-
lated energy.

In general, the study of energy exchange in collisions
of MBs is a difficult problem. Some results are known for a

special type of FPU lattice [37], and in a one-dimensional
DNA model [38], but at present no general results are
known concerning to collisions of MBs in Klein-Gordon
lattices.

The simulations show that when a MB collides with a
trapped breather, the effects of the collision are strongly
dependent on their exact dynamical details when the effec-
tive collision processes begin. We have performed a large
number of simulations in a chain of N = 200 base pairs,
with the coupling parameters µ = 0.002 and ε = 0.129.
All the breathers have the frequency ωb = 0.8. We have
found that under favorable conditions the accumulation
of energy is possible as a consequence of the trapping of
successive breathers.

We show in Figure 10a contour plots for the evolution
of the energy density of five breathers launched towards
the interface at different instant of time. All the transla-
tional kinetic energies are different.

The first breather is launched towards the interface at
t = 0 with a translational kinetic energy smaller than the
critical value, (λc = 0.056), so that the breather is trapped
at the discontinuity region.

The phonon radiation must be removed because it dis-
torts the numerical simulations when it is reflected at the
boundaries. For that purpose, just before each breather is
launched, we set to zero the displacements and velocities
outside the interface region, (|n| > 5).

The second breather is launched with λ = 0.07, which
is greater than λc, but it is also trapped at the interface.
We have observed that the results of the collision between
these two breathers depends strongly on their relative
phase when the collision processes begin. We have chosen
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Fig. 10. (a) Contour plots for the
evolution of five breathers launched
towards the interface with dif-
ferent translational kinetic ener-
gies. The breathers are trapped
at the interface increasing the ac-
cumulated energy density (λ =
0.05; 0.07; 0.15; 0.19; 0.2). (b) Time
evolution of the central energy.

Fig. 11. (a) Contour plots for the
evolution of five breathers launched
towards the interface, with different
translational kinetic energies (λ =
0.05; 0.07; 0.15; 0.18; 0.14). After the
last collision the accumulated energy
is transmitted to the right side of the
chain. (b) Time evolution of the cen-
tral energy.

the translational kinetic energy of this second breather in
order to obtain an efficient trapping.

Using the same procedure as before, three consecu-
tive breathers are launched with λ = 0.15; 0.19; 0.2, re-
spectively. All of them are trapped, and to illustrate the
evolution of the total collected energy at the interface,
we have represented in Figure 10b the central energy ver-
sus time. We observe that after each collision the total
trapped energy increases, but only part of the energy of
each incident breather is accumulated at the interface re-
gion. The numerical simulations show that the breather
is partly transmitted and partly reflected, and also some
little phonon radiation appears. It is interesting to ob-
serve that the phonon radiation increases as the number
of trapped breathers or the energy accumulated increases.
The possibility for trapping more energy at the inhomo-

geneity region by additional incoming breathers seems to
have a limit due to a saturation effect.

The accumulation of energy at the interface region
could start local base pair openings in the DNA molecule.
Nevertheless, the simulations show that the accumulation
of energy can, occasionally, disappears after an appropri-
ate collision. An example of this is shown in Figure 11,
where the last collision induces the transmission of the ac-
cumulated energy to the right side of the chain. In this sim-
ulation five breathers are launched successively towards
the interface with λ = 0.05, λ = 0.07, λ = 0.15, λ = 0.18
and λ = 0.14, respectively.

To gain deeper insight into the possible reasons for
these striking features, the authors are currently investi-
gating this issue and will be object of a future work.
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6 Conclusions

We have studied the evolution, and some collision pro-
cesses, of MBs in two different DNA molecules. The first
DNA chain consists of a sequence of identical base pairs,
where there exists an interface such that the dipole mo-
ments at each side are oriented in opposite directions. The
second chain consists also of a sequence of identical base
pairs but there exists a single dipole moment which is ori-
ented in opposite direction to that of the others ones. I
both cases there exists a local inhomogeneity defined by
the interface or the single inverted dipole, respectively.

The Hamiltonian of the Peyrard-Bishop model is aug-
mented with an energy term that takes into account the
long-range forces due to the dipole-dipole coupling be-
tween the base pairs. We have generated MBs with differ-
ent translational kinetic energies and studied the effects
of the collisions with the interface or with the single in-
verted dipole, respectively. In each case, the outcome de-
pends on the values of the stacking coupling constant,
the dipole-dipole coupling constant, the frequency and the
translational kinetic energy of the MBs. Taking fixed val-
ues for the first three quantities, we have found that if
the kinetic energy of the MB is smaller than a critical
value, the breather is trapped after colliding with the in-
terface, whereas if the kinetic energy is larger, the breather
is transmitted to the other side of the interface loos-
ing energy. Therefore, there exist two different dynamical
regimes: a) the trapping regime, when MBs are trapped at
the interface; b) the transmission regime, when MBs are
transmitted to the other side of the interface. The same
effects appear when MBs collide with a single inverted
dipole in the chain. In both cases, a necessary condition
for the trapping of a MB is the existence of a stationary
breather solution with the same frequency, centered at the
inhomogeneity site, which we call inhomogeneity breather
(IB), and with a smaller energy than the internal energy of
the MB. When collision occurs part of the energy is trans-
ferred to the chain as phonon radiation. The existence, for
each case, of a symmetric effective on-site potential well
due to the dipole-dipole coupling, explains qualitatively
the found behavior.

The value of the critical translational kinetic energy
that determines the transition from the trapping regime
to the transmission regime is directly related to the extent
of the localization of the IB. This extent of localization is
related to the quotient between the long-range and the
short-range coupling parameters. Trapping or accumula-
tion of energy is facilitated when this quotient increases.

It is important to state that the most simple structural
modification in a homogeneous DNA molecule, which is to
reverse the orientation of a single dipole, provides a mech-
anism for the trapping of moving breathers. The simula-
tions show that some incoming MBs can also be trapped
after colliding with a trapped breather, producing an ac-
cumulation of energy at the inhomogeneity region. The in-
terface or the inverted dipole can play the role of chargers
of vibrational energy. Occasionally, a successful incoming
breather can collide with this excited region and all the
accumulated energy can be carried away to the rest of the

DNA chain. At this point, if these processes occur really in
nature, one is tempted to imagine that successive pulses of
accumulated energy can arrive to a coding sequence pro-
ducing the initiation of the transcription processes. The
design of experiments in real or synthetic DNA are en-
couraged in order to verify the results presented in this
paper.
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